Complementary Silicon Plastic Power Transistors

DPAK-3 for Surface Mount Applications

Designed for low voltage, low-power, high-gain audio amplifier applications.

Features

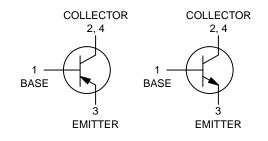
- High DC Current Gain
- Lead Formed for Surface Mount Applications in Plastic Sleeves (No Suffix)
- Straight Lead Version in Plastic Sleeves ("-1" Suffix)
- Low Collector-Emitter Saturation Voltage
- High Current-Gain Bandwidth Product
- Annular Construction for Low Leakage
- Epoxy Meets UL 94 V-0 @ 0.125 in
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Base Voltage	V _{CB}	100	Vdc
Collector-Emitter Voltage	V _{CEO}	100	Vdc
Emitter-Base Voltage	V _{EB}	7.0	Vdc
Collector Current – Continuous	I _C	4.0	Adc
Collector Current – Peak	I _{CM}	8.0	Adc
Base Current	I _B	1.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	12.5 0.1	W W/°C
Total Device Dissipation @ T _A = 25°C (Note 2) Derate above 25°C	P _D	1.4 0.011	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C
ESD – Human Body Model	HBM	3B	V
ESD – Machine Model	MM	С	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. When surface mounted on minimum pad sizes recommended.

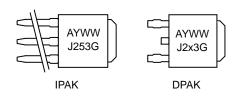


ON Semiconductor®

www.onsemi.com

4.0 A, 100 V, 12.5 W POWER TRANSISTOR

COMPLEMENTARY



IPAK CASE 369D STYLE 1

DPAK-3 CASE 369C STYLE 1

MARKING DIAGRAMS

A = Assembly Location

Y = Year WW = Work Week x = 4 or 5

G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance Junction-to-Case Junction-to-Ambient (Note 2)	R _{θJC} R _{θJA}	10 89.3	°C/W

^{2.} When surface mounted on minimum pad sizes recommended.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	,		•	•
Collector–Emitter Sustaining Voltage (Note 3) $(I_C = 10 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	100	-	Vdc
Collector Cutoff Current $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0, T_J = 125^{\circ}\text{C})$	I _{CBO}	- -	100 100	nAdc μAdc
Emitter Cutoff Current (V _{BE} = 7.0 Vdc, I _C = 0)	I _{EBO}	-	100	nAdc
DC Current Gain (Note 3) ($I_C = 200 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 1.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc}$)	h _{FE}	40 15	180	-
Collector–Emitter Saturation Voltage (Note 3) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$)	V _{CE(sat)}	-	0.3 0.6	Vdc
Base–Emitter Saturation Voltage (Note 3) (I _C = 2.0 Adc, I _B = 200 mAdc)	V _{BE(sat)}	-	1.8	Vdc
Base–Emitter On Voltage (Note 3) (I _C = 500 mAdc, V _{CE} = 1.0 Vdc)	V _{BE(on)}	-	1.5	Vdc
DYNAMIC CHARACTERISTICS				
Current-Gain - Bandwidth Product (Note 4) (I _C = 100 mAdc, V _{CE} = 10 Vdc, f _{test} = 10 MHz)	f _T	40	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz)	C _{ob}		50	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \approx 2%.

^{4.} $f_T = |h_{FE}| \cdot f_{test}$.

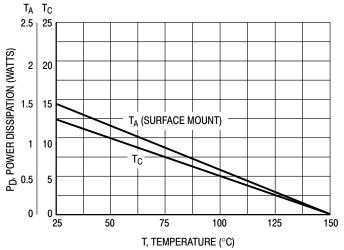


Figure 1. Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

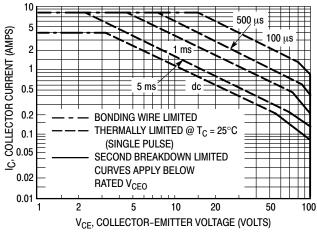


Figure 2. Active Region Maximum Safe Operating Area

The data of Figure 2 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 3. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

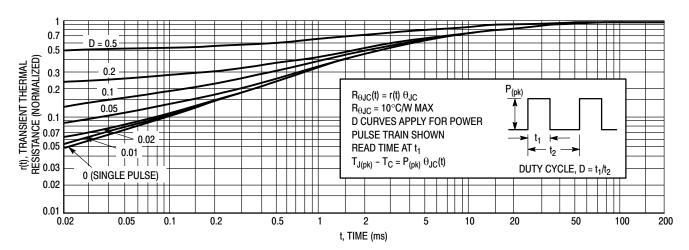


Figure 3. Thermal Response

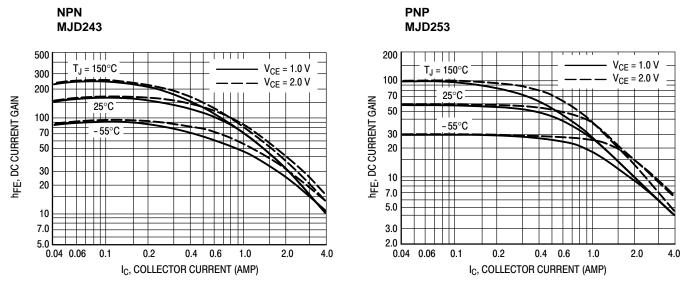


Figure 4. DC Current Gain

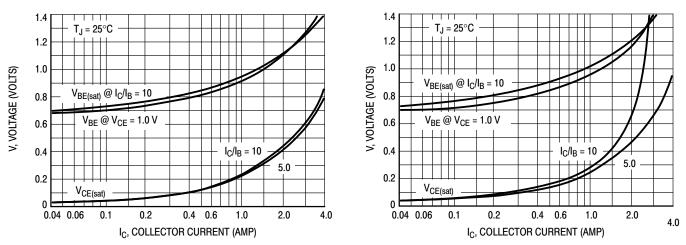
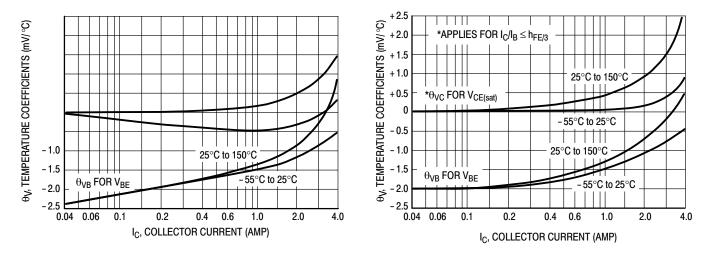
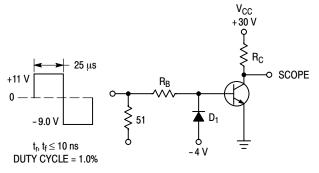




Figure 5. "On" Voltages

Figure 6. Temperature Coefficients

 R_B and R_C VARIED TO OBTAIN DESIRED CURRENT LEVELS D_1 MUST BE FAST RECOVERY TYPE, e.g.: 1N5825 USED ABOVE $I_B\approx 100$ mA MSD6100 USED BELOW $I_B\approx 100$ mA FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES

1K 500 300 200 100 t, TIME (ns) 50 30 20 10 $I_C/I_B = 10$ $T_J = 25^{\circ}C$ NPN MJD243 3 2 PNP MJD253 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 10 I_C, COLLECTOR CURRENT (AMPS)

Figure 8. Turn-On Time

Figure 7. Switching Time Test Circuit

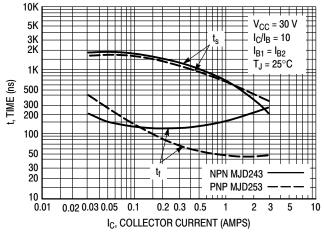


Figure 9. Turn-Off Time

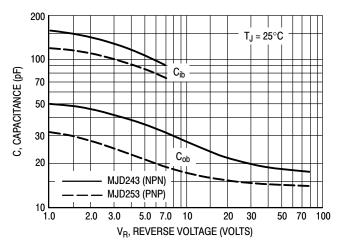


Figure 10. Capacitance

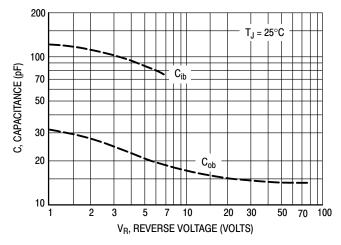
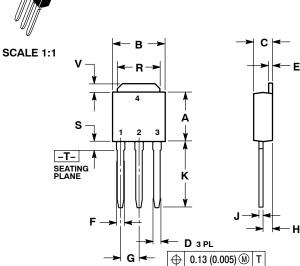
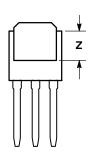


Figure 11. Capacitance

ORDERING INFORMATION

Device	Package Type	Package	Shipping [†]
MJD243G	DPAK-3 (Pb-Free)	369C	75 Units / Rail
MJD243T4G	DPAK-3 (Pb-Free)	369C	2,500 / Tape & Reel
NJVMJD243T4G*	DPAK-3 (Pb-Free)	369C	2,500 / Tape & Reel
MJD253-1G	IPAK (Pb–Free)	369D	75 Units / Rail
MJD253T4G	DPAK-3 (Pb-Free)	369C	2,500 / Tape & Reel
NJVMJD253T4G*	DPAK-3 (Pb-Free)	369C	2,500 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP


MECHANICAL CASE OUTLINE

DATE 15 DEC 2010

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
V	0.035	0.050	0.89	1.27
Z	0.155		3.93	

MARKING DIAGRAMS

1:	s
BASE	
COLLECTOR	
EMITTER	
COLLECTOR	
	BASE COLLECTOR EMITTER

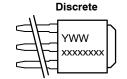
STYLE 5: PIN 1. GATE

2. ANODE CATHODE

ANODE

STYLE 2: PIN 1. GATE 2. DRAIN SOURCE 3 DRAIN

STYLE 6: PIN 1. MT1 2. MT2 3. GATE


MT2

STYLE 3: PIN 1. ANODE 2. CATHODE 3 ANODE 4. CATHODE

STYLE 7: PIN 1. GATE 2. COLLECTOR

3. EMITTER COLLECTOR STYLE 4: PIN 1. CATHODE ANODE
 GATE

4. ANODE

WW

xxxxxxxxx = Device Code Α = Assembly Location IL = Wafer Lot Υ = Year

= Work Week

DOCUMENT NUMBER:	98AON10528D	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	IPAK (DPAK INSERTION MOUNT)		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. В

NOTE 7

- h3

Ո

TOP VIEW

L3

b2 e

DPAK (SINGLE GAUGE) CASE 369C **ISSUE F** SCALE 1:1 Α

DETAIL A

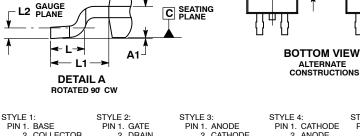
C-

SIDE VIEW

DATE 21 JUL 2015

NOTES:

z

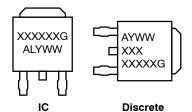

BOTTOM VIEW

Z

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90	REF
L2	0.020 BSC		0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

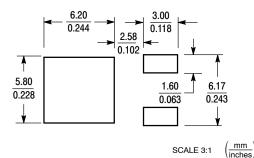

| \oplus | 0.005 (0.13) lacktriangledown C

Ħ

STYLE 5: PIN 1. BASE 2. COLLECTOR 3. EMITTER PIN 1. GATE 2. DRAIN PIN 1. ANODE 2. CATHODE 3. ANODE PIN 1. CATHODE PIN 1. GATE 2. ANODE 3. CATHODE 2. ANODE 3. GATE SOURCE 4. CATHODE ANODE 4. COLLECTOR 4. ANODE 4. DRAIN

STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:
PIN 1. MT1	PIN 1. GATE	PIN 1. N/C	PIN 1. ANODE	PIN 1. CATHODE
2. MT2	2. COLLECTOR	CATHODE	2. CATHODE	ANODE
3. GATE	EMITTER	ANODE	RESISTOR ADJUST	CATHODE
4. MT2	COLLECTOR	4. CATHODE	4. CATHODE	4. ANODE

GENERIC MARKING DIAGRAM*



XXXXXX = Device Code = Assembly Location Α L = Wafer Lot Υ = Year

WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative