MULTI OUTPUT AC-DC

FEATURES:

- Compact 3.0" x 5.0" x 1.3" Size
- 3 Year Warranty
- Universal 85-264V Input
- Dual, Triple or Quad Outputs
- 90% Peak Efficiency
- 86% Average Efficiency
- <300mW No Load Input Power
- RoHS Compliant

- IEC 60601-1 3rd ed. Medical Cert.
- IEC 60950-1 2nd ed. ITE Certification • IEC 62368-1 2nd ed. Certification
- IEC 60601-1-2 4th ed. EMC
- Class B Emissions per EN55011/32
- -20 to +70°C Operating Temperature
- · Optional Power Fail Warning Optional Chassis/Cover

CHASSIS/COVER

OPEN FRAME

SAFETY SPECIFICATIONS

Underwillers Laborator File E137708/E140259 Underwriters Laboratories UL 62368-1:2014, 2nd Edition CAN/CSA-C22.2 No. 62368-1-14 AAMI/ANSI ES60601-1:2005/(R) 2012 CAN/CSA-C22.2 No. 60601-1:2014

CB Reports/Certificates (including all IEC 62368-1:2014, 2nd Edition National and Group Deviations) IEC 60601-1:2005/A1:2012

EN 62368-1:2014, 2nd Edition **TUV SUD America** EN 60601-1:2006/A1:2013

RoHS Directive (Recast)

(2014/35/EU of February 2014) (2015/863/EU of March 2015)

Electrical Equipment (Safety) Regulations 2016 SI No. 1101

Restriction of the Use of Certain Hazardous Substances in EEE Regulations 2012 SI No. 3032 + 2019 SI No.492

MODEL LISTING							
MODEL	OUTPUT 1	OUTPUT 2	OUTPUT 3	OUTPUT 4			
GRN-200-4001	+3.3V/30A	+5V/8A	+12V/2A	-12V/2A			
GRN-200-4002	+5V/30A	+3.3V/8A	+12V/2A	-12V/2A			
GRN-200-4003	+5V/30A	+24V/3A	+12V/2A	-12V/2A			
GRN-200-4004	+5V/30A	+24V/3A	+15V/2A	-15V/2A			
GRN-200-4005	+24V/6A	+5V/8A	+12V/2A	-12V/2A			
GRN-200-3001	+5V/30A	+12V/6A		-12V/2A			
GRN-200-3002	+5V/30A	+15V/5A		-15V/2A			
GRN-200-3003	+5V/30A		+24V/1.5A	-24V/1.5A			
GRN-200-2001	+5V/30A	+24V/3A					
GRN-200-2002	+5V/30A	+12V/6A					
GRN-200-2003	+12V/12A	-12V/6A					
GRN-200-2004	+15V/10A	-15V/5A					

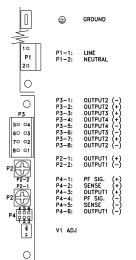
ORDERING INFORMATION

Consult factory for alternate output configurations.

Please specify the following optional features when ordering:

CH - Chassis PF - Power Fail Warning CO - Cover IO - Isolated Outputs BF - Type BF

All specifications are maximum at 25°C, 200W unless otherwise stated, may vary by model and are subject to change without notice.


	GRN-2	200				
OUTP	UT SPECIF	ICATIONS				
Output Power at 50°C(1)	135W	Convection Cooled, Open Frame				
(See Derating Chart)	200W	300LFM Forced Air, Open Frame(14)				
Voltage Centering(15)	Output 1:	$\pm~0.5\%$ (all outputs at 50% load)				
	Outputs 2-4:	± 5.0% (all outputs at 50% load)				
Voltage Adjust Range	Output 1:	95-105%				
Load Regulation	Output 1:	± 0.5% (0-100% load change)	,			
	Outputs 2:	±6% (4001-4002 20-100% load change	e			
Course Degulation	Outputs 2-4:	± 5.0% (10-100% load change) 0.5%				
Source Regulation	Outputs 1-4: Outputs 2-4:					
Cross Regulation Ripple & Noise ₍₆₎	Outputs 2-4: Outputs 1-4:	5.0% 1.0% or 100mV p-p, 20MHz BW	_			
Turn on Overshoot	None	1.0 % OF 100111V p-p, 20101112 BVV				
Transient Response		o within 1% of initial set point due to a	_			
Transient Nesponse		load change, 500µs maximum, 4%				
Overvoltage Protection	Latching, between	n 110% and 150% of rated output voltage.				
Overpower Protection	110-150% rated F	P _{OUT} , cycle on/off, auto recovery	_			
Hold Up Time	16ms minimum, f					
Start Up Time	<1 sec., 115/230\	/ Input				
Output Rise Time	25ms typical					
Minimum Load ₍₅₎	No minimum load					
	JT SPECIFIC	CATIONS				
Protection Class	05 0041111111111111111111111111111111111	2/ 1 / 2				
Source Voltage		C (see derating chart)				
Frequency Range	47 – 63 Hz					
Input Protection Peak Inrush Current	Dual internal 5A time delay fuses, 1500A breaking capacity					
Peak Infush Current Peak Efficiency	40A max Up to 90%					
Peak Επισιένους Average Efficiency	86% (Avg. of 25%, 50%, 75%, 100% rated load)					
No Load Input Power		<300mW, 115/230 V _{IN} , no load				
No Edda Inpat i owoi		0 V _{IN,} no load (PF Option)				
ENVIRON		ECIFICATIONS				
Ambient Operating Temp. Range		Derating (see derating Chart)				
Ambient Storage Temp. Range	- 40°C to + 85°C					
Operating Relative Humidity Range	20-90% non-cond	20-90% non-condensing				
A IAIA	3,000m ASL Ope					
Altitude	3,000iii AOL Ope					
Temperature Coefficient	0.02%/°C	9				
Temperature Coefficient Vibration (MIL-STD-810G)	0.02%/°C 2.5G swept sine,	10-2000Hz, 1octave/min, 3 axis, 1 hour ea	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G)	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis	10-2000Hz, 1octave/min, 3 axis, 1 hour eas	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI	0.02%/°C 2.5G swept sine,	10-2000Hz, 1octave/min, 3 axis, 1 hour eas	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENE Means of Protection Primary to Secondary	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECIF	10-2000Hz, 1octave/min, 3 axis, 1 hour easts FICATIONS of Patient Protection)	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI Means of Protection Primary to Secondary Primary to Ground	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECIE 2MOPP (Means of 1MOPP (Means of	10-2000Hz, 1octave/min, 3 axis, 1 hour easts FICATIONS of Patient Protection) of Patient Protection)	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI Means of Protection Primary to Secondary Primary to Ground Secondary to Ground	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECIE 2MOPP (Means of 1MOPP (Means of	10-2000Hz, 1octave/min, 3 axis, 1 hour easts FICATIONS of Patient Protection)	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENE Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength _(7,8)	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of 1MOPP (Means of Operational Insula	10-2000Hz, 1octave/min, 3 axis, 1 hour easts FICATIONS of Patient Protection) of Patient Protection) attion (1MOPP w/ Option BF)	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENE Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength(r, s) Reinforced Insulation	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of 1MOPP (10-2000Hz, 1octave/min, 3 axis, 1 hour easts FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF)	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength _(7,8) Reinforced Insulation Basic Insulation	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of 100 Means of	10-2000Hz, 1octave/min, 3 axis, 1 hourea s FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF)	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength _(7,8) Reinforced Insulation Basic Insulation Operational Insulation	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of 100 Means of	10-2000Hz, 1octave/min, 3 axis, 1 hour easts FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF)	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength _(7,8) Reinforced Insulation Basic Insulation Operational Insulation	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of 100 Means of	10-2000Hz, 1octave/min, 3 axis, 1 houreasts FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF) WAC) WAC) WAC) WAC) WAC) WAC)	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength(r, 8) Reinforced Insulation Basic Insulation Operational Insulation Leakage Current Earth Leakage Touch Current	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of 1MOPP (10-2000Hz, 1octave/min, 3 axis, 1 hour easts FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF) VAC) VAC) VAC) VAC) VAC) VAC) VAC) VAC	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength(r, s) Reinforced Insulation Basic Insulation Operational Insulation Leakage Current Earth Leakage Touch Current Patient Leakage Current	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of Operational Insula) 5656 VDC (4000) 2121 VDC (1500) 707 VDC (500V.) <300μA NC, <10 <100μA NC, <50 <100μA NC, <50	10-2000Hz, 1octave/min, 3 axis, 1 hour ease FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF) VAC) VAC) VAC) VAC) VAC) VAC) VAC) VAC	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength _(7,8) Reinforced Insulation Basic Insulation Operational Insulation Leakage Current Earth Leakage Touch Current Patient Leakage Current Power Fail Signal	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of 100 Means o	10-2000Hz, 1octave/min, 3 axis, 1 hour ease FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF) VAC) VAC) VAC) VAC) VAC) VAC) VAC) VA	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength _(7,8) Reinforced Insulation Basic Insulation Operational Insulation Leakage Current Earth Leakage Touch Current Patient Leakage Current Power Fail Signal Switching Frequency	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of 100 Means o	10-2000Hz, 1octave/min, 3 axis, 1 hour ease FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF) VAC) VAC) VAC) AC)/2121VDC(1500VAC) w/ Option BF 00μA SFC 0μA SFC 0μA SFC w/Option BF unt power failure 9ms prior to loss of C:Variable	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength _(7,8) Reinforced Insulation Basic Insulation Operational Insulation Leakage Current Earth Leakage Touch Current Patient Leakage Current Power Fail Signal Switching Frequency Remote Sense ₍₉₎	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of 11MOPP (Means of 1200) 11MOPP (Means of 1200) 11MOPP (Means of 1200) 12MOPP (Means of 12	10-2000Hz, 1octave/min, 3 axis, 1 houreasts FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF) VAC) VAC) VAC) VAC) VAC) VAC) VAC) VA	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength _(7,8) Reinforced Insulation Basic Insulation Operational Insulation Leakage Current Earth Leakage Touch Current Patient Leakage Current Power Fail Signal Switching Frequency Remote Sense ₍₉₎ Mean-Time Between Failures	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of Operational Insula) 5656 VDC (4000) 2121 VDC (1500) 707 VDC (500V. <300 μA NC, <10 <100 μA NC, <50 Logic low with inp Output 1(13) PWM:65 KHz/PF- 250mV compens: >200,000 HOURS	10-2000Hz, 1octave/min, 3 axis, 1 houreasts FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF) VAC) VAC) VAC) VAC) VAC) VAC) VAC) VA	a			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength(7, 8) Reinforced Insulation Basic Insulation Operational Insulation Leakage Current Earth Leakage Touch Current Patient Leakage Current Power Fail Signal Switching Frequency Remote Sense(9) Mean-Time Between Failures Weight	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of 1MOPP	10-2000Hz, 1octave/min, 3 axis, 1 hour easts FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF) WAC) WAC) WAC) WAC) WAC) UAA SFC 0µA S				
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength _(7,8) Reinforced Insulation Operational Insulation Leakage Current Earth Leakage Touch Current Patient Leakage Current Power Fail Signal Switching Frequency Remote Sense ₍₉₎ Mean-Time Between Failures Weight EMC SPECIFICATION	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of 1MOPP (10-2000Hz, 1octave/min, 3 axis, 1 houreasts FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF) VAC) VAC) VAC) AC)/2121VDC(1500VAC) w/ Option BF 00μA SFC 0μA SFC 0μA SFC w/Option BF out power failure 9ms prior to loss of C:Variable ation of output cable losses (output 1) S, MIL-HDBK-217F, 25° C, GB e / 1.16 lb. Chassis and cover 2:2014, 4 TH ed./IEC 61000-6-2:200	15			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) Means of Protection Primary to Secondary Primary to Ground Dielectric Strength(7, 8) Reinforced Insulation Basic Insulation Operational Insulation Leakage Current Earth Leakage Touch Current Patient Leakage Current Power Fail Signal Switching Frequency Remote Sense(9) Mean-Time Between Failures Weight EMC SPECIFICATION Electrostatic Discharge	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of 100 the 100 th	10-2000Hz, 1octave/min, 3 axis, 1 hour easts FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF) VAC) VAC) VAC) VAC) AC)/2121VDC(1500VAC) w/ Option BF 00µA SFC 0µA S	95			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength(r, s) Reinforced Insulation Basic Insulation Operational Insulation Leakage Current Earth Leakage Touch Current Patient Leakage Current Power Fail Signal Switching Frequency Remote Sense(9) Mean-Time Between Failures Weight EMC SPECIFICATION Electrostatic Discharge Radiated Electromagnetic Field	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of Operational Insula) 5656 VDC (4000) 2121 VDC (1500) 707 VDC (500V.) <300 μA NC, <10 <100 μA NC, <50 <100 μA NC, <50 <100 μA NC, <50 Logic low with inp Output 1(13) PWM:65 KHz/PFi 250mV compensions 1.0 lb. Open fram S (IEC 60601-1- EN 61000-4-2 EN 61000-4-3	10-2000Hz, 1octave/min, 3 axis, 1 hour eases FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF) VAC) VAC) VAC) VAC) AC)/2121VDC(1500VAC) w/ Option BF 00µA SFC 0µA SFC 0µA SFC 0µA SFC w/Option BF out power failure 9ms prior to loss of C:Variable ation of output cable losses (output 1) S, MIL-HDBK-217F, 25° C, GB e / 1.16 lb. Chassis and cover 2:2014, 4 TH ed./IEC 61000-6-2:200 ±8KV contact / ±15KV air discharge 80MHz-2.7GHz, 10V/m, 80% AM	95			
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength(r, s) Reinforced Insulation Basic Insulation Operational Insulation Leakage Current Earth Leakage Touch Current Patient Leakage Current Power Fail Signal Switching Frequency Remote Sense(9) Mean-Time Between Failures Weight EMC SPECIFICATION Electrostatic Discharge Radiated Electromagnetic Field Electrical Fast Transients/Bursts	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of 1MOPP	10-2000Hz, 1octave/min, 3 axis, 1 hour eases FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF) VAC) VAC) VAC) VAC) AC)/2121VDC(1500VAC) w/ Option BF 00µA SFC 0µA SFC 0µA SFC 0µA SFC w/Option BF out power failure 9ms prior to loss of C:Variable ation of output cable losses (output 1) S, MIL-HDBK-217F, 25° C, GB e / 1.16 lb. Chassis and cover 2:2014, 4 TH ed./IEC 61000-6-2:200 ±8KV contact / ±15KV air discharge 80MHz-2.7GHz, 10V/m, 80% AM ±2 KV, 5KHz/100KHz				
Temperature Coefficient Vibration (MIL-STD-810G) Shock (MIL-STD-810G) GENEI Means of Protection Primary to Secondary Primary to Ground Secondary to Ground Dielectric Strength(r, s) Reinforced Insulation Basic Insulation Operational Insulation Leakage Current Earth Leakage Touch Current Patient Leakage Current Power Fail Signal Switching Frequency Remote Sense(9) Mean-Time Between Failures Weight EMC SPECIFICATION Electrostatic Discharge Radiated Electromagnetic Field	0.02%/°C 2.5G swept sine, 20G, 11ms, 3 axis RAL SPECII 2MOPP (Means of Operational Insula) 5656 VDC (4000) 2121 VDC (1500) 707 VDC (500V.) <300 μA NC, <10 <100 μA NC, <50 <100 μA NC, <50 <100 μA NC, <50 Logic low with inp Output 1(13) PWM:65 KHz/PFi 250mV compensions 1.0 lb. Open fram S (IEC 60601-1- EN 61000-4-2 EN 61000-4-3	10-2000Hz, 1octave/min, 3 axis, 1 hour eases FICATIONS of Patient Protection) of Patient Protection) ation (1MOPP w/ Option BF) VAC) VAC) VAC) VAC) AC)/2121VDC(1500VAC) w/ Option BF 00µA SFC 0µA SFC 0µA SFC 0µA SFC w/Option BF out power failure 9ms prior to loss of C:Variable ation of output cable losses (output 1) S, MIL-HDBK-217F, 25° C, GB e / 1.16 lb. Chassis and cover 2:2014, 4 TH ed./IEC 61000-6-2:200 ±8KV contact / ±15KV air discharge 80MHz-2.7GHz, 10V/m, 80% AM	95			

Radiated Electromagnetic Field	EN 61000-4-3	80MHz-2.7GHz, 10V/m, 80% AM	
Electrical Fast Transients/Bursts	EN 61000-4-4	±2 KV, 5KHz/100KHz	Д
Surge Immunity	EN 61000-4-5	±2 KV line to earth / ±1 KV	line to line A
Conducted Immunity	EN 61000-4-6	0.15 to 80MHz, 10V, 80% AM	
Magnetic Field Immunity	EN 61000-4-8	30A/m, 60 Hz.	A
Voltage Dips	EN 61000-4-11	0% U _T , 0.5 cycles, 0-315°	100/240V A/A
		0% U _T , 1 cycles, 0°	100/240V A/A
		40% U _T , 10/12 cycles, 0°	100/240V B/A
		70% U _T , 25/30 cycles, 0°	100/240V B/A
Voltage Interruptions	EN 61000-4-11	0% U _T , 300 cycles, 0°	100/240V B/B
Radiated Emissions	EN 55011/32	Class B	
Conducted Emissions	EN 55011/32	Class B	
Harmonic Current Emissions	EN 61000-3-2	Class A	
Voltage Fluctuations/Flicker	EN 61000-3-3	Compliant	•

DERATING REQUIREMENTS

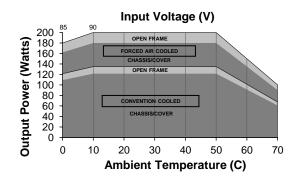
- Derate Output 1 (3.3-5V) current rating 33% when convection cooled.
- Derate Output 1 (3.3-5V) current rating 33% when convection cooled.
 Derate Outputs 2-4 (12-24V) current rating 25% when convection cooled.
- Derate Total Output Power linearly from 100% load at 50°C to 50% load at 70°C.
- Derate Total Output Power linearly from 100% load at 90Vin to 90% load at 85Vin.
- Derate Total Output Power 10% when convection cooled using Chassis or Chassis/Cover.
- Derate Total Output Power 10% when forced-air cooled using Chassis or Chassis/Cover.

CONNECTOR SPECIFICATIONS

Ground: 0.187 quick disconnect terminal.

P1: 0.156 friction lock header mates with Molex 09-50-3031 or equivalent crimp terminal housing with Molex 08-50-0189 or equivalent crimp terminal.

P3: 5566 Mini-Fit Jr. header mates with 5557 Mini-Fit Jr. or equivalent crimp housing with 5556 Mini-Fit or equivalent crimp terminal.


P2: 6-32 screw down terminal mates with #6 ring tongue terminal. (10 in-lb Max)

P4: 0.100 friction lock header mates with Molex 22-55-2061 or equivalent crimp terminal housing with Molex 71851 or equivalent crimp terminal.

APPLICATIONS INFORMATION

- Each output can deliver its rated current but Total Output Power must not exceed 200W, as determined by the cooling method.
- Generally, adequate cooling is provided when semiconductor case temperatures do not exceed 70°C rise and transformer temperature does not exceed 60°C rise at any specified ambient temperature.
- Sufficient area must be provided around power supply to allow natural movement of air to develop in convection-cooled applications.
- This product is intended for use as a professionally-installed component within information technology, industrial, and medical equipment and is not intended for stand-alone operation.
- Minimum load is not required for reliable operation; however, a 10% load may be required on Output 1 when loading Outputs 2, 3 or 4.
- Peak-to-Peak Output Ripple and Noise is measured directly at the output terminals of the power supply, without the use of the probe ground lead or retractable tip (tip-and-barrel method), 20MHz bandwidth.
- 7. This product was type-tested and safety-certified using the dielectric strength test voltages listed in Table 6 of IEC 60601-1:2005. In consideration of Clause 8.8.3, care must be taken to ensure that the voltage applied to a reinforced insulation does not overstress different types and levels of insulation. Primary and secondary-to-ground capacitors may need to be disconnected prior to performing a dielectric strength test on the power supply or the end product. It is highly recommended that the DC test voltages listed in DVB.1, Annex DVB of UL 60601-1 1st Edition are not exceeded during a production-line dielectric strength test of the assembled end product. Please consult factory for further information.
- This power supply has been safety-approved and final-tested using a DC dielectric strength test. Please consult factory before performing an AC dielectric strength test.
- Remote-Sense terminals may be used to compensate for cable losses up to 400mV, depending on model. The use of a twisted pair, decoupling capacitors and an appropriatelyrated low-impedance capacitor connected across the load will increase noise immunity.
- Maximum screw penetration into bottom chassis mounting holes is 0.100 inches. Maximum screw penetration into side chassis mounting holes is 0.188 inches.
- 11. To comply with emissions specifications, all four mounting hole pads must be electrically connected to a common metal chassis. Chassis/Cover option is recommended. Refer to Operating Instructions for additional information.
- Common RF shielding precautions may need to be taken to assure emissions compliance.
 Refer to Operating Instructions for additional information.
- Power Fail (AC-Good) feature provides a logic-low warning signal from an open collector transistor output 9-15ms prior to loss of output from AC failure.
- 14. 300LFM minimum of airflow must be maintained one inch above all points of top-side components or cover when forced-air cooling is required.
- 15. A 3% increase above nominal voltage of Output 1 is required to meet ±5% centering of Output 2 on 4002 only.

MAX Pout vs. AMBIENT TEMPERATURE/INPUT VOLTAGE

Rev. MM 2/16/2021