

Highly stabilized and precise fluxgate technology based current transducer, reengineered for cost sensitive, non-intrusive, isolated DC and AC current measurement applications up to 300A

Features

Linearity error maximum 6 ppm

Offset maximum 15 ppm

Fluxgate, closed loop compensated technology with fixed excitation frequency and second harmonic zero flux detection for enhanced accuracy and stability

Industry standard 6.3 x 0.8mm faston connection

Cost focused high performance current transducer

DC and AC current metering with +/-0.1% absolute accuracy up to 5kHz

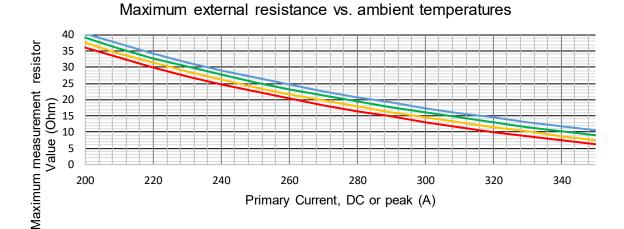
Applications:

Gradient amplifiers for MRI devices

Precision power supplies, drives

Batteries testing and evaluation systems

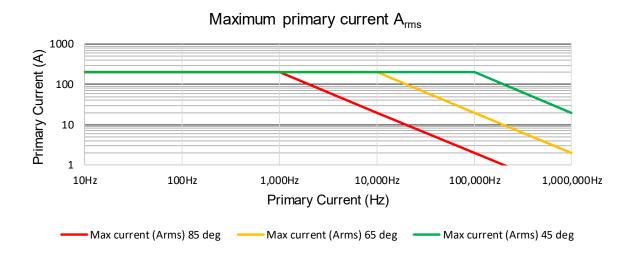
Variable speed motor drives


Specification highlights	Symbol	Unit	Min	Тур.	Max
Nominal primary AC current	IPN AC	Arms			200
Nominal primary DC current	IPN DC	А	-300		300
Measuring range	ÎРМ	Α	-330		330
Primary / secondary ratio	n1 : n2		1:1000		1:1000
Linearity error	ϵ_{L}	ppm	-6		6
Offset current (including earth field)	I _{OE}	ppm	-15		15
DC-10Hz Overall accuracy @25°C(= \mathcal{E}_L + I_{OE})	acc8	ppm	-21		21
AC Maximum gain error from 10Hz to 5kHz	EG	%			±0.1
Operating temperature range	Ta	°C	-40		+85
Power supply voltages	Uc	V	±14.25		±15.75

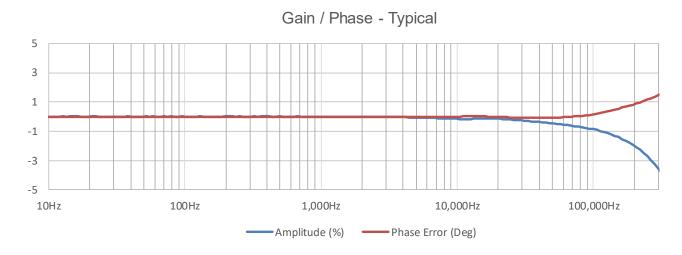
Electrical specifications at Ta=23°C, supply voltage = ± 15V unless otherwise stated

Parameter		Symbol	Unit	Min	Тур.	Max	Comment	
Nominal primary AC o	urrent	I _{PN} AC	Arms			200	Refer to fig. 1 & 2 for derating	
Nominal primary DC	current	I _{PN} DC	Α	-300		300	Refer to fig. 1 for derating	
Measuring range		I _{PM}	Α	-330		330	Refer to fig. 1 & 2 for derating	
Overload capacity		Î _{OL}	Α			1000	Non-measured, 100ms	
Nominal secondary co	urrent	I _{SN}	mA	-300		300	At nominal primary DC current	
Primary / secondary ra	atio			1:1000		1:1000		
Measuring resistance		R_{M}	Ω	0		12	Refer to fig. 1 for details	
Linearity error		\mathcal{E}_L	ppm	-6		6	ppm refers to nominal current	
-		C _L	μΑ	-1,8		1,8	μA refers to secondary current	
Offset current		I _{OE}	ppm	-15		15	ppm refers to nominal current	
(including earth field)		OL.	μΑ	-4,5		4,5	μA refers to secondary current	
DC-10Hz Overall accurate (IOE)	racy@25°C (= £L +	acc8	ppm	-21		21	ppm refers to nominal DC current	
Offset temperature		TC _{IOE}	ppm/K	-2		2	ppm refers to nominal current	
coefficient		I CIOE	μA/K	-0,6		0,6	μA refers to secondary current	
Bandwidth		f(-3dB)	kHz	200			Small signal, graphs figure 3	
Amplitude error	10Hz – 5kHz 5kHz - 100kHz 100kHz - 200kHz	εG	%			0,10% 2,00% 10,0%	% refers to nominal current	
Phase shift	10Hz – 5kHz 5kHz - 100kHz 100kHz - 1000kHz	θ	0			0.1° 0.5° 2.0°		
Response time to a s	tep current IPN	tr @ 90%	μs		1		di/dt = 100A/µs	
Noise	0 - 100Hz 0 - 1kHz 0 - 10kHz 0 - 100kHz	noise	ppm rms			0,3 1,0 5,0 20,0	Measured on secondary current	
Fluxgate excitation free	quency	f _{Exc}	kHz		15,6			
Induced rms voltage of	n primary conductor		μV rms			5		
Power supply voltages	3	Uc	V	±14.25		±15.75		
Positive current consu	ımption	lps	mA			35	Add Is (if Is is positive)	
Negative current consumption		Ins	mA			35	Add Is (if Is is negative)	
Operating temperature range		Та	C	-40		85		
Stability								
Offset stability over time			ppm /	-10		10	ppm refers to nominal current	
	·		month	-3		3	μA refers to secondary current	
Impact of external mag	gnetic field		ppm / mT	-15		15	ppm refers to nominal current	
			ppiii / III I	-4,5		4,5	μA refers to secondary current	

Measurement resistor RM and ambient temperature derating (Fig. 1)


R_max_40

R_max_55

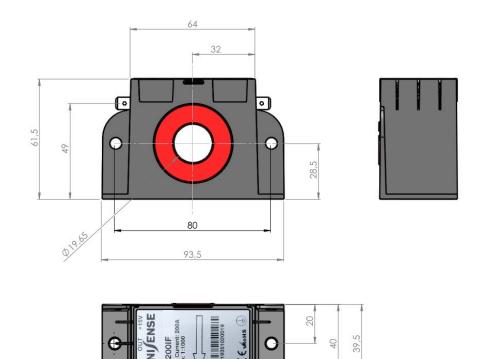

R_max_70

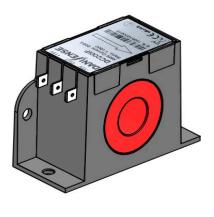
Frequency and ambient temperature derating (Fig. 2)

R_max_25

Frequency characteristics (Fig. 3)

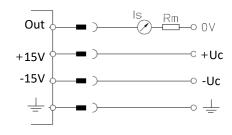
Isolation specifications


Parameter	Unit	Value
Clearance	mm	9
Creepage distance	mm	10
Comparative tracking index (CTI)	٧	> 600
Rms voltage for AC isolation test, 50/60 Hz, 1 min - Between primary and (secondary and shield (GND))	kV	5.7
Impulse withstand voltage (1.2/50µs)	kV	10.4
Rated rms isolation voltage reinforced isolation, overvoltage category III, Pollution degree 2 according to IEC 61010-1 and EN50780	V	300 600


Absolute maximum ratings

Parameter	Unit	Max	Comment
Primary	kA	1.5	Maximum 100ms
Power supply	V	±16.5	

Environmental and mechanical characteristics


Parameter	Unit	Min	Тур	Max	Comment
Operating temperature range	°C	-40		85	
Storage temperature range	°C	-40		85	
Relative humidity	%	20		80	Non-condensing
Mass	kg		0.250		
Connections	4 Industrial faston 6.3 x 0.8mm				
Standards	EN 61326-1 EMC				

(general tolerance 0.3mm unless otherwise stated)

DC200IF connection

Positive current direction

Is identified by an arrow on the transducer label

CAUTIONS:

- PLEASE IMPERATIVELY RESPECT <u>CONNECTION POLARITIES</u> TO PREVENT DESTRUCTION OF THE TRANSDUCER
- PLEASE ENSURE <u>ADEQUATE CURRENT AND VOLTAGE RATING</u>
 <u>OF POWER SUPPLES</u> TO AVOID SATURATION

Mounting instructions

Base plate mounting
 Side mounting
 2 holes φ5.5
 2 holes φ5.5