MOSFET - Power 60 V, 63 A, 12.4 m Ω

Features

- Low R_{DS(on)}
- High Current Capability
- Avalanche Energy Specified
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

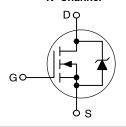
Paran	Symbol	Value	Units			
Drain-to-Source Voltag	V_{DSS}	60	V			
Gate-to-Source Voltage	e – Contin	uous	V_{GS}	±20	V	
Gate-to-Source Voltage Non-Repetitive (t _p = 10	V_{GS}	±30	V			
Continuous Drain	Steady	T _C = 25°C	I_{D}	63	Α	
Current – R _{θJC} (Note 1)	State	T _C = 100°C		45		
Power Dissipation -	Steady State	T _C = 25°C	P_{D}	107	W	
R _{θJC} (Note 1)		T _C = 100°C		54		
Pulsed Drain Current	t _p :	= 10 μs	I _{DM}	252	Α	
Operating Junction and	T _J , T _{STG}	–55 to 175	°C			
Source Current (Body D	I _S	63	Α			
Single Pulse Drain-to S	EAS	80	mJ			
Energy – (L = 0.1 mH)	IAS	40	Α			
Lead Temperature for S (1/8" from case for 10 s)	TL	260	°C			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

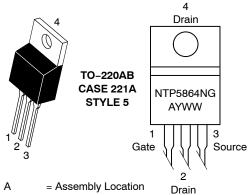
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Units
Junction-to-Case (Drain) - Steady State (Note 1)	$R_{\theta JC}$	1.4	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	33	°C/W

1. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).



ON Semiconductor®


www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX (Note 1)
60 V	12.4 mΩ @ 10 V	63 A

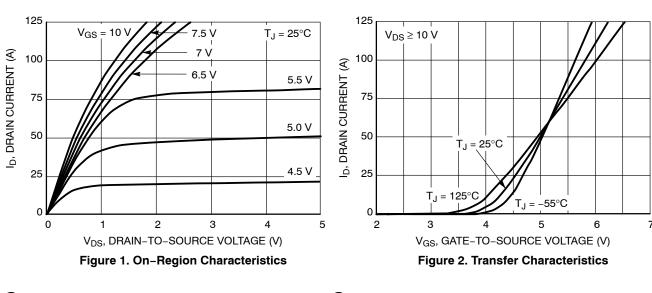
N-Channel

MARKING DIAGRAM & PIN ASSIGNMENT

Υ = Year

WW = Work Week G = Pb-Free Package

ORDERING INFORMATION


Device	Package	Shipping
NTP5864NG	TO-220 (Pb-Free)	50 Units / Rail

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	,		<u>.</u>				
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		60			٧
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				58		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 60 V	T _J = 25°C			1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _O	_{SS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 2)	•		•		•	•	•
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _E) = 250 μΑ	2.0		4.0	٧
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-10		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V,	I _D = 20 A		10.2	12.4	mΩ
Forward Transconductance	9FS	V _{DS} = 15 V, I _D = 20 A			10		S
CHARGES AND CAPACITANCES			<u>.</u>				
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V			1680		pF
Output Capacitance	C _{OSS}				189		
Reverse Transfer Capacitance	C _{RSS}	103			124		
Total Gate Charge	Q _{G(TOT)}				31		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 10 \text{ V}, V_{DS} = 48 \text{ V},$ $I_{D} = 20 \text{ A}$			2.0		
Gate-to-Source Charge	Q _{GS}				7.3		
Gate-to-Drain Charge	Q_{GD}				10		
Gate Resistance	R_{g}				0.5		Ω
SWITCHING CHARACTERISTICS, Vo	is = 10 V (Note	3)					
Turn-On Delay Time	t _{d(ON)}				10		ns
Rise Time	t _r	V _{GS} = 10 V, V	_{DD} = 48 V,		6.4		7
Turn-Off Delay Time	t _{d(OFF)}	I _D = 20 A, R			18		
Fall Time	t _f				4.6		
DRAIN-SOURCE DIODE CHARACTE	RISTICS		<u>.</u>				
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V$	T _J = 25°C		0.94	1.2	V
		$I_S = 40 \text{ A}$	T _J = 125°C		0.84		
Reverse Recovery Time	t _{RR}				24		ns
Charge Time	t _a	$V_{GS} = 0 \text{ V, } dI_{SD}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 20 \text{ A}$			16		
Discharge Time	t _b				7.9		
Reverse Recovery Charge	Q _{RR}				20		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

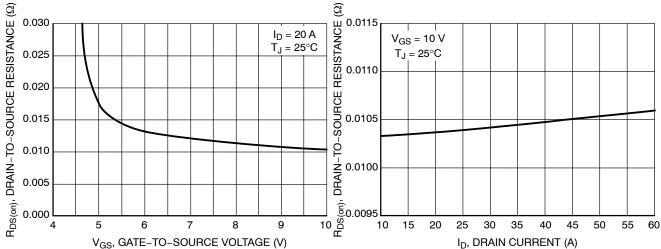
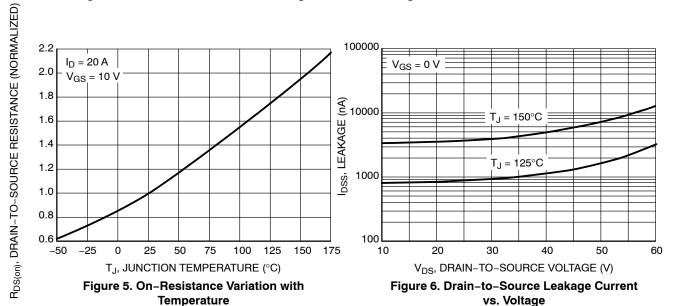



Figure 3. On-Resistance vs. Gate Voltage

Figure 4. On-Resistance vs. Drain Current

TYPICAL CHARACTERISTICS

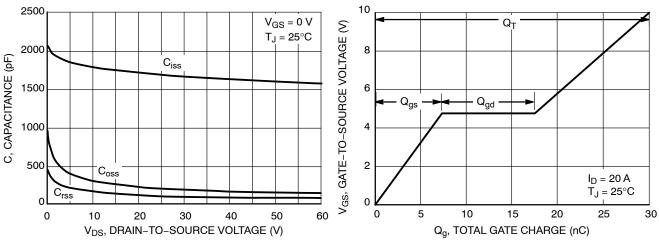


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source vs. Total Charge

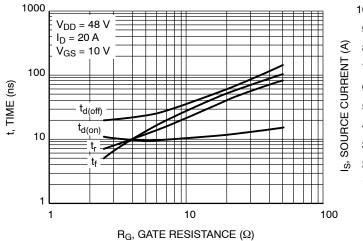


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

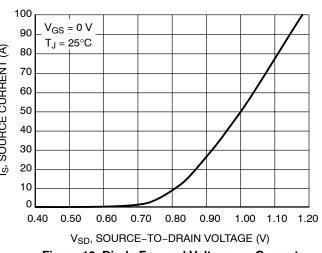


Figure 10. Diode Forward Voltage vs. Current

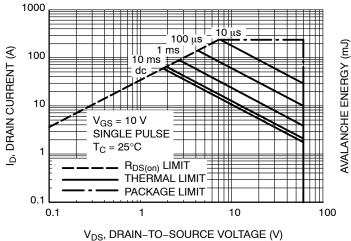
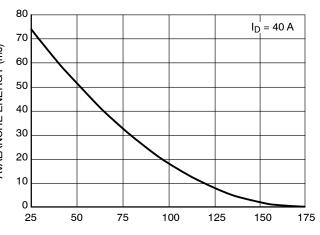



Figure 11. Maximum Rated Forward Biased Safe Operating Area

T_J, STARTING JUNCTION TEMPERATURE

Figure 12. Maximum Avalanche Energy versus

Starting Junction Temperature

TYPICAL CHARACTERISTICS

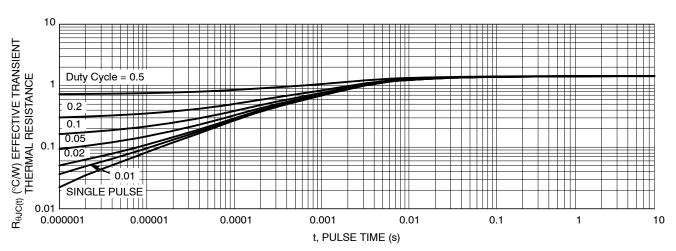
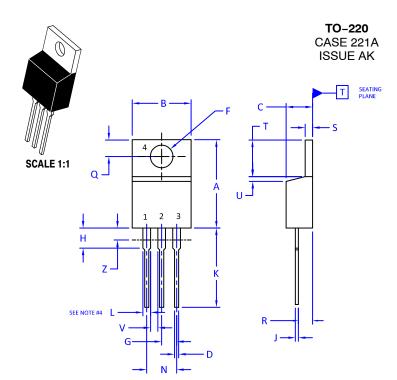



Figure 13. Thermal Response

DATE 13 JAN 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCHES		MILLIMETERS		
DIM	MIN.	MAX.	MIN.	MAX.	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.415	9.66	10.53	
С	0.160	0.190	4.07	4.83	
D	0.025	0.038	0.64	0.96	
F	0.142	0.161	3.60	4.09	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.161	2.80	4.10	
J	0.014	0.024	0.36	0.61	
К	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
N	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.41	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
V	0.045		1.15		
Z		0.080		2.04	

STYLE 1: PIN 1. 2. 3. 4.	COLLECTOR EMITTER	STYLE 2: PIN 1. 2. 3. 4.	COLLECTOR	STYLE 3: PIN 1. 2. 3. 4.	ANODE	2. 3.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
STYLE 5: PIN 1. 2. 3. 4.	DRAIN SOURCE	STYLE 6: PIN 1. 2. 3. 4.	CATHODE ANODE	STYLE 7: PIN 1. 2. 3. 4.	ANODE	2. 3.	CATHODE ANODE EXTERNAL TRIP/DELAY ANODE
STYLE 9: PIN 1. 2. 3. 4.			GATE SOURCE DRAIN SOURCE	STYLE 11: PIN 1. 2. 3. 4.		STYLE 12: PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE NOT CONNECTED

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative