Chip Beads (2518066007Y3)

Part Number: 2518066007Y3

MULTI- LAYER CHIP BEAD

Part Number System: Example 2512063017Y1

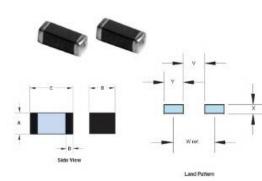
25	1206	301	7	Y	1		
Chip Package Impedance		Impedance	Packaging	Material	Current Code		
Bead	Size	Code	Code	Code	0 < 1.0A		
Code	Code	300 A	6= Bulk Packed	Y = Standard Signal Speed	1 ≥1.0A <2.0A		
		7=	Taped and Reeled 7" Reel	Z = High Signal Speed	3 ≥ 3.0A < 4.0A		
8=		8=	Taped and Reeled 13" Reel	H = GHz Speed	ETC		

Fair- Rite offers a broad selection of cost effective multi- layer chip beads to suppress conducted EMI signals. Chip beads can be used in an array of devices such as cellular phones, computers, laptops, pagers, etc. The small package sizes accommodate automated placements and allow for a dense packaging of circuit boards.

Chip Beads are available in standard, high and GHz signal speeds.

Recommended Soldering Profile

Packaging Options:

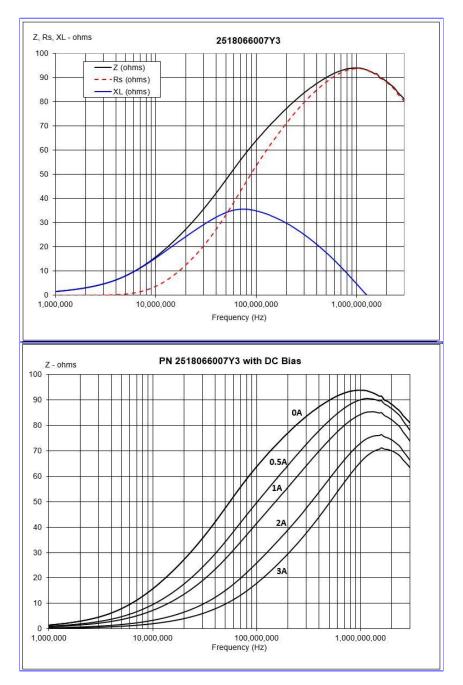

- All multi- layer chip beads are supplied taped and reeled, if required bulk packed chip beads can be provided.

The suggested land patterns are in accordance to the latest revision of IPC-7351.

Weight: 0.06 (g)

Раска	ge Size	: 1806 (451	1				
Dim	mm	mm tol	nominal inch	inch misc.			
А	1.6	±0.20	0.063				
В	1.6	±0.20	0.063				
С	4.5	±0.20	0.177				
D 0.7 ±0.30			0.028				
Land	Pattern	s					
V		W	Х	Y	Ζ		
2.00 3.90		3.90	1.80	1.90			
(0.079") (0.154")		(0.154")	(0.071")	(0.075")	-		

Reel Information								
Tape Width mm	Pitch mm	Parts 7" Reel	Parts 13" Reel	Parts 14" Reel				
12	8	2000	10000					



Pkg. Size			c	c				Land P	atterns			Reel Int	ormation
	۸	в			D	WL (g)	Y	W (ref)	×	Y	Tape Width mm	Pitch	Part 7" Ree
0402 (1005)	0.5±0.05 0.020	0.5±0.05 0.020	1.0±0.05 0.040	0.25±0.15 0.010	0.002	0.40 0.016	1.30 0.051	0.70 0.028	0.90 0.035	8	4	1000	
0603 (1608)	0.8±0.15 0.031	0.8±0.15 0.031	1.6±0.15 0.063	0.4±0.2 0.016	0.006	0.60 0.024	1.70 0.067	1.00 0.039	1.10 0.043	8	4	4000	
0805 (2012)	0.9±0.2 0.035	1.25±0.2 0.049	2.0±0.2 0.079	0.5±0.3 0.020	0.01	0.60 0.024	1.90 0.075	1.50 0.059	1.30 0.051	8	4	4000	
1206 (3216)	1.1±0.2 0.043	1.6±0.2 0.063	3.2±0.2 0.126	0.7±0.3 0.028	0.03	1.20 0.047	2.80 0.110	1.80 0.071	1.60 0.063	8	4	3000	
1806 (4516)	1.6±0.2 0.063	1.6±0.2 0.063	4.5±0.2 0.177	0.7±0.3 0.028	0.06	2.00 0.079	3.90 0.154	1.80 0.071	1.90 0.075	12	8	2000	
1812 (4532)	1.5±0.2 0.059	3.2±0.2 0.126	4.5±0.2 0.177	0.7±0.3 0.028	0.09	2.00 0.079	3.90 0.154	3.40 0.134	1.90 0.075	12	8	1000	

Chart Legend + Test frequency

Typical Impedance (Ω)							
50 MHz	47	7					
100 MHz^+	60	50 ±25%					
500 MHz	9(0					
1000 MHz^+	-						
Electrical Provide the Provident Pro	op	erties					
Max DCR (Ω)		0.04					
Max Current (mA)		3000					

The impedance values listed are typical values. The nominal impedance with a +/-25% tolerance is specified for the + marked 100 MHz. Chip beads are measured for impedance on the HP 4291A and fixture HP 16192A. Chip beads are 100% tested for impedance and dc resistance.

CSV Download

	Fair-	Rite Products Corj	p.	One Commercial	Row,	Wallkill, New York 1	2589-	0288
888-324-7748		845-895-2055		Fax: 845-895-2629				www.fair- rite.com